Exact Controllability for the Equation of the One Dimensional Plate 21 2 Notations and main results
نویسندگان
چکیده
Cruz S. Q. de Caldas ([email protected]) Juan Limaco ([email protected]) Rioco K. Barreto ([email protected]) Departamento de Matemática Aplicada Universidade Federal Fluminense IMUFF Rua Mário Santos Braga s/n, CEP: 24020-140, Niterói, RJ, Brasil. Pedro Gamboa ([email protected]) Instituto de Matemática Universidade Federal do Rio de Janeiro Caixa Postal 68530, CEP 21945–970 Rio de Janeiro, RJ, Brasil.
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملLocal exact controllability for Berger plate equation
We study the exact controllability of a nonlinear plate equation by the means of a control which acts on an internal region of the plate. The main result asserts that this system is locally exactly controllable if the associated linear Euler-Bernoulli system is exactly controllable. In particular, for rectangular domains we obtain that the Berger system is locally exactly controllable in arbitr...
متن کاملNumerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution
The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...
متن کاملMulti-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation
A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...
متن کاملBoundary controllability for the quasilinear wave equation
We study the boundary exact controllability for the quasilinear wave equation in the higher-dimensional case. Our main tool is the geometric analysis. We derive the existence of long time solutions near an equilibrium, prove the locally exact controllability around the equilibrium under some checkable geometrical conditions. We then establish the globally exact controllability in such a way tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003